lunes, 30 de diciembre de 2019

XiuaElectronics: ¿Qué es la electrónica cuántica y cual es su aplicación en la actualidad? Parte #02.

Buenas noches estimados lectores, en el día de hoy daremos continuación a una entrada que realicé el día de ayer, ésta hablaba sobre la electrónica cuántica. En la primera parte de este tema tan interesante y hasta enigmático por aquellas personas que aún siendo electrónicos, solo se limitan a aprender lo que las universidad les tiene en el pensum, vimos en un principio que es la electrónica cuántica. A groso modo. También hablamos acerca de la evolución de la electrónica general que vemos hoy en día -- basada en silicio-- la cual con el tiempo a encontrado un problema al momento de optimizarse para generar nuevas tecnologías, y es la miniaturización y el efecto túnel que esto produce en los dispositivos. Resulta que la electrónica como tal no es estática, es decir, esta va evolucionando. Esta evolución conllevó a que la electrónica tocara los espines de los electrones para poder solventar sus agobios. Pero, ¿que diablos es un espín de un electrón?. Bueno para responder lo anterior debemos centrarnos en el significado de la palabra espintrónica ya que la electrónica actual ya se esta sumergiendo en esta para dar paso a optimizaciones que la litografía reducida no podría conseguir por si solo con el silicio. Para entender mejor esto veremos algo de teoría a continuación. Para ver la parte #01 de este tema ingresa al siguiente enlace: Parte #01.

¿Qué es la espintrónica?


La espintrónica procede de dos palabras, espín y la electrónica. El electrón como bien sabemos, posee una carga y una masa, pero además de esto gira, esta última propiedad se le conoce como espín, y de esta hay dos tipos, ya que como mencionamos anteriormente la propiedad es de girar, el espín se representa como un vector, y este tiene dos distintos valores --Norte-oriente, Norte-occidente, Sur-Oriente, Sur-oriente, son una representación análoga de los 2 posibles valores que tiene el espín--. Otra cualidad del espín del electrón es que este posee un diminuto campo magnético y este varia dependiendo de los dos valores del espín.

En un campo eléctrico ordinario los electrones se orientan aleatoriamente y el resultado final es que su orientación individual no influye en la corriente eléctrica. En los dispositivos espintrónicos la situación es bien diferente.

Un dispositivo espintrónico operaría con electrones polarizados, es decir, que todos ellos posean el mismo valor de espín y con sistemas capaces de ser sensibles a dicha polarización. En tal caso, un dispositivo espintrónico muy simple usando electrones "espín polarizados" podría permitir la transmisión de un par de señales por un único canal, produciendo una señal diferente para los dos valores posibles, duplicando así el ancho de banda del cable. Un paso más avanzado sería disponer de algún dispositivo que pudiese realizar algún tipo de procesamiento en la corriente, de acuerdo con los estados de los espines.

El método más simple conseguir electrones "espín polarizados" es hacer pasar una corriente a través de un material ferromagnético, un cristal único que filtra a los electrones de manera uniforme. Si en cambio se dispone el filtro frente a un transistor, éste se convertirá en un detector sensible a los espines. Si los dos campos magnéticos están alineados, entonces la corriente podrá pasar, mientras que si se oponen aumentará la resistencia del sistema, efecto conocido como magnetoresistencia gigante. Probablemente el dispositivo espintrónico más exitoso hasta el momento haya sido la válvula espín, un dispositivo  con una estructura de capas de materiales magnéticos que muestra enorme sensibilidad a los campos magnéticos. Cuando uno de estos campos está presente, la válvula permite el paso de los electrones, pero en caso contrario sólo deja pasar a los electrones con un espín determinado.

Una aplicación espintrónica de gran trascendencia será la de los qubits espintrónicos. Todos sabemos que en los ordenadores cada bit tiene un valor definido: 0 ó 1. Ello significa (sistema de numeración de base 2) que con una serie de 8 bits se puede representar cualquier número desde el 0 al 255, pero una serie (00101110, por ejemplo) solo representa a un número cada vez.

Los 2 valores de espines electrónicos (“arriba” y “abajo”) podrían usarse como bits, con lo que los bits cuánticos o qubits podrían existir como superposición de 0 y 1, ser a la vez ambos números. Y 8 qubits pueden representar cada número de 0 a 255, pero simultáneamente. Ello puede dar lugar a una nueva generación de ordenadores (computación cuántica).

Como podemos concluir de la propiedad espín del electrón, vemos que hay una gran ventaja frente a los sistemas en que se basan solo de cargas, como lo es la electrónica actual. En un futuro no muy lejano, los nuevos sistemas electrónicos actuaria bajo dos propiedades, carga y espín del electrón. Lo anterior conlleva a una reducción considera de energía en los sistemas y además una mayor velocidad de estos.

Hasta aquí dejaremos la entrada del día de hoy y con esto e tema de la electrónica cuántica y la electrónica clásica. Estén pendientes para nuevo contenidos mis estimados lectores.




Escrito por: Breismam Alfonso Rueda Díaz








Estén pendientes de mi canal, de mi blog y de mi pagina de Facebook para más contenido.





sábado, 28 de diciembre de 2019

XiuaElectronics: ¿Qué es la electrónica cuántica y cual es su aplicación en la actualidad? Parte #01.

Buenos días estimados lectores, hoy les vengo a hablar de un tema muy interesante y de suma importancia por su rol en la actualidad y en un futuro. Hablaremos de la electrónica cuántica.

¿Qué es la electrónica cuántica y cual es su aplicación en la actualidad?


La electrónica cuántica es una área de la física. Esta tiene la tarea de observar, utilizar y en general estudiar el comportamiento de los electrones en la materia con la interacción de los fotones llamados así por  Gilbert N. Lewis, o cuantos de luz denominados así por Albert Einstein. El fotón en la mecánica cuántica desempeña un papel muy importante ya que este cuanto posee propiedades corpusculares, es decir, en unos casos se comporta como partícula y en otros como onda. Esta área por lo general es absorbida por otras áreas como lo son la física de los semiconductores o física de estado solido. Muchas de las aplicaciones que se han encontrado se han aplicado a la óptica cuántica de la cual hablaremos mas adelante, pero para hacernos una pequeña idea es simplemente la aplicación de los fenómenos de la mecánica cuántica en los que se ve implicada la luz y las interacciones con la materia.

Bueno, ¿pero por qué estas propiedades de los fotones y la interacción de estos con los electrones son importantes?. Para contestar la anterior pregunta es menester hablar sobre la electrónica actual. 

Hoy en día la tecnología crece de una forma abrumadora, pero esta no podrá hacerlo para siempre, claro sin ayuda de nosotros --Electrónicos, físicos, matemáticos, etc--. Una tendencia de la tecnología es la optimización, y la optimización se traduce en menor cantidad de recursos y mejor funcionamiento. Por ejemplo, ENIAC (primera computadora en el mundo) pesó 27 toneladas y tenia unas dimensiones de 
2.6mts x 0.9mts x 24mts; hoy en día hay computadoras de mayor procesamiento y con un tamaño menor a los de una mano. ¿Pero hasta que punto podremos optimizar?. El limite es hasta que nuestras herramientas nos lo permitan. Actualmente aún podemos miniaturizar más los componentes para crear nuevos dispositivos, pero nos estamos acercando al efecto túnel, un efecto que consiste en el anómalo funcionamiento de un semiconductor, consecuencia del exceso de miniaturización del canal, haciendo que la barrera de potencial no pueda contener el paso de electrones. 
Para hacer entendible lo anterior veamos un ejemplo:



El efecto túnel de los semiconductores y la boquilla del embudo.


La boquilla del embudo permite el paso de cierta cantidad de liquido, y dependiendo del tamaño de la boquilla de éste pasará cierta cantidad de agua. Pero ¿qué pasaría si la boquilla se miniaturizara tanto hasta llegar a ser unas 20 mil veces más pequeñas que una gota de agua?, sencillo, el agua dentro del embudo nunca caería aunque hubiera un hueco. Es decir, si hay un hueco o no en la boquilla del embudo, si ese hueco es más pequeño de una gota de agua, no pasará nada de liquido por este. Este es el efecto túnel de los semiconductores. Llega un punto en que así allá un camino para dar paso a los electrones, no pasarán por que es demasiado pequeño. Esto afecta a todos los dispositivos, desde transistores hasta memorias. Para solventar lo anterior en la actualidad se esta trabajando con una área de la electrónica llamada espintrónica de la cual hablaremos en la siguiente entrada. 

¿Entonces cual sería el limite para poder miniaturizar sin llegar al efecto túnel?. En la actualidad no se conoce el limite exacto, pero podemos ver que en la industria de los procesadores, liderara por AMD e Intel, vemos que ya empiezan a tener problemas en la fabricación de chip con una litografía menor a 5 nm. Laboratorios ya han podido crear transistores de hasta 1nm. por ejemplo, se han creado transistores funcionales de 4nm, 3nm (2006 KAIST y national nano feb) y 1nm (2016 dpto. Energía universidad Berkeley).

El futuro de la electrónica como la conocemos llegará pronto a su fin, pero esto no quiere decir que la electrónica se quedará en esta época y será sustituida por otra cosa. Como todo en la vida, la inevitabilidad de la evolución es axiomática. En las siguientes entradas veremos como la electrónica esta evolucionando para poder adecuarse al presente-futuro y cuales serán los cambios.

Hasta aquí dejaremos el post de día de hoy. Este tema será de dos partes dada la cantidad de información que se esta tratando.

Para ver la parte #02 de este tema tan interesante, ingresa al siguiente link: Parte #02.




Escrito por: Breismam Alfonso Rueda Díaz








Estén pendientes de mi canal, de mi blog y de mi pagina de Facebook para más contenido.




domingo, 8 de diciembre de 2019

XiuaElectronics: Ruido eléctrico y los transitorios Parte #02

Buenas noches estimados lectores, en el día de hoy vamos a ver la segunda parte del tema que trabajamos en la entrada pasada, y es el ruido que se presenta en las diferentes etapas de nuestros proyectos. En la anterior entrada vimos lo concerniente a algunos conceptos básico para entender este tema, y tratamos sobre el acoplamiento capacitivo. Para esta entrada trabajaremos con el acoplamiento inductivo. Para el que es nuevo en mi blog le recomiendo que lo mire y estudie la anterior entrada correspondiente a el tema que trataremos el día de hoy. Pueden iniciar desde cero dando clic aquí: Ruido eléctrico. No siendo más, comencemos. 


Acoplamiento Inductivo.

este tipo de ruido tiene como fuente excitatriz fuentes electromagnéticas y/o también la corriente de un circuito y el campo magnético producido en este. Resulta que dentro de un circuito, cuando se produce un cambio de corriente, este cambio tiene como efecto la inducción de una corriente en otro circuito. Algunos  ejemplos comunes de las conexiones que presentan ruido de corrientes directamente en la conexión a tierra:


  • Sub-paneles con uniones extras Tierra-Neutro
  • Tomacorrientes mal cableadas con neutro y tierra conectadas
  • Equipo con dispositivos de protección internos en estado sólido que se han recortado desde la línea o desde el neutro a la conexión a tierra, ó que no han fallado pero que presentan derrame normal de corriente. Este derrame de corriente está limitado por la norma UL a 3.5 mA para equipos conectados a un enchufe, pero no existe limitante para los equipos cableados permanentemente con derrame de corrientes potencialmente más altos. (Se puede identificar fácilmente el derrame de corrientes porque desaparecerá cuando el dispositivo se encienda)
  • Otro ejemplo común es la tan nombrada barra aislada de conexión a tierra. Cuando se encuentra en un punto a tierra potencialmente diferente al electrodo de conexión a tierra de origen, entonces se origina una curva cerrada de corriente a tierra. Esto todavía se conoce como conducción del ruido, aunque la conexión directa sea a través de la tierra.
  •  Las conexiones Datacom que proporcionan una línea metálica desde una terminal a otra pueden también ser conductores del ruido. En el caso de conexiones no balanceadas con terminales sencillas (RS-232), la conexión a la terminal a tierra se hace al final de cada cable. Esto forma una línea de corrientes a tierra si el equipo,en cada terminal, tiene un origen de energía diferente con una conexión atierra diferente.


El principio básico de inducción de corriente se da cuando el “cable perturbador” y el “cable victima”, son acompañados por un campo magnético. El nivel de perturbación depende de las variaciones de corriente (di/dt) y de la inductancia de acoplamiento mutuo.
El acoplamiento inductivo aumenta con:

  • La frecuencia: la reactancia inductiva es directamente proporcional a la frecuencia (XL = 2pfL).
  • La distancia entre los cables perturbador y víctima y la longitud de los cables que corren en paralelo.
  • La altura de los cables con relación al plano de referencia (en relación al suelo).
  • La impedancia de carga del cable o circuito perturbador.



Algunas medidas básicas para reducir el efecto de acoplamiento inductivo entre cables.

  • Limite la longitud de los cables corriendo en paralelo.
  • Aumente la distancia entre el cable perturbador y el cable victima.
  • Conecte a tierra una de las extremidades de los “shields” de los dos cables.
  • Reduzca el dv/dt del perturbador aumentando el tiempo de subida de la señal, siempre que sea posible (Resistores conectados en serie o resistores PTC en el cable perturbador, anillos de ferrita en los perturbadores y/o cable víctima).

Algunas medidas básicas para reducir el efecto de acoplamiento inductivo entre cable y campo.

  • Limite la altura h del cable al plano de tierra.
  • Siempre que sea posible coloque el cable junto a la superficie metálica.
  • Use cables trenzados.Use ferritas y filtros de EMI.











Algunas medidas básicas para reducir el efecto de acoplamiento inductivo entre cable y loop a tierra.

  • Reduzca la altura (h) y el largo del cabo.Siempre que sea posible ponga el cable junto a la superficie metálica.
  • Use cables trenzados.
  • En altas frecuencias, conexione a tierra el “shield” en dos puntos (cuidado!) y en bajas frecuencia en un solo punto solamente.







A continuación veremos una tabla en la cual podremos apreciar las distancias requeridas para garantizar la protección EMI:


Las interferencias Electromagnéticas pueden ser reducidas:
  • Cable trenzado 
  • Insolación Óptica
  • Por el uso de canaletas y bandejas metálicas de conexión a tierra.

Espero que les haya gusta el tema del día de hoy. Estén pendientes que dentro de poco estaré publicado la parte #03 de este tema a través de este link donde hablaremos de acoplamiento conductivo. Para estudiar la primera parte de este tema, por favor ingresa al siguiente link: Parte #01

Para saber más acerca de este tema, en los enlaces de fuentes se encuentra toda esta información, ya que en muchos casos literalmente tome la información y la pegue acá sin editar ya que me no me pareció prudente algún cambio -pereza de resumir o reescribir-. Sin embargo respeto los derechos de autor anunciando las fuentes y diciendo que esta entrada así como otras contienen recopilación de diferentes autores sin hacer alusión a ellos solo al momento de incluir los recursos del presente.

Para ver las otras partes de este tema tan interesante ingresa al siguiente link: Fuentes de ruido eléctrico

Escrito por: Breismam Alfonso Rueda Díaz



Fuentes:
  • https://dam-assets.fluke.com/s3fs-public/2815086_6120_ENG_A_W.PDF
  • https://instrumentacionycontrol.net/efecto-de-ruido-en-los-circuitos-de-instrumentacion-criterios-para-minimizar-los-efectos/
  • http://www.trainingconsultinggroup.com/tips/detail/-como-se-acopla-el-ruido-electrico-a-dispositivos-de-medicion-y-control-acoplamiento-galvanico
  • http://www.smar.com/newsletter/marketing/index152.html
  • Articulos técnicos - César Cassiolato
  • Manuales SMAR
  • www.system302.com.br
  • www.smar.com.br
  • http://www.smar.com/brasil2/artigostecnicos/
  • http://www.electrical-installation.org/wiki/Coupling_mechanisms_and_counter-measures
  • EMI - Interferência Eletromagnética, César Cassiolato
  • Aterramento, Blindagem, Ruídos e dicas de instalação, César Cassiolato
  • O uso de Canaletas Metálicas Minimizando as Correntes de Foucault em Instalações PROFIBUS, César Cassiolato
  • Ruídos e Interferências em instalações Profibus, César Cassiolato
  • Pesquisas en internet









Estén pendientes de mi canal, de mi blog y de mi pagina de Facebook para más contenido.


martes, 3 de diciembre de 2019

XiuaElectronics: Ruido eléctrico y los transitorios Parte #01

Buenas noches estimados lectores, en el día de hoy vamos a ver un tema de gran importancia tanto para el sector eléctrico, como para el sector electrónico y de telecomunicaciones. Es el ruido que se presenta en las diferentes etapas de nuestros proyectos. En esta entrada veremos los conceptos claves para entender estos fenómenos que tanto dolor de cabeza nos produce, -- incluido -- y veremos las posibles causas; además de esto veremos los efectos del ruido eléctrico en las mediciones y algunas técnicas para evitarlos. Este tema estará dividido en varias partes, por consiguiente en la parte inferior de esta estrada estará el link de la siguiente parte y en las posteriores de la siguiente y de la anterior. No siendo más comencemos.

Ruido eléctrico y los transitorios


El ruido eléctrico son señales eléctricas no deseadas que se presentan en un circuito. Estas son aleatorias, es decir, se presentan de diferentes formas dependiendo del origen de estas. El ruido eléctrico se convierte en un problema ya que puede ocasionar perdidas o distorsión de la información en diferentes tipos de circuitos. Además de esto nos produce falsa información lo cual  nos puede provocar un accidente. un ejemplo de lo anterior es por ejemplo el manejo de un motor trifásico, el cual estará sujetando una cortina eléctrica, en el caso que se presente en la etapa de control una señal falsa, podría caerse esta cortina y si somos muy desafortunados caerá sobre alguien o sobre nosotros.
Lo anterior es solo uno de una gota en un mar de ejemplos el los cuales el ruido es un  factor a considerar para prevenir diferentes accidentes y/o desastres. Anteriormente nombramos la etapa de control, y esto por que para todo buen electrónico, su proyecto deberá tener una etapa de control, ya sea análoga o digital. Esta etapa es la más vulnerable, ya que trabaja con niveles bajos de tensión, y muchas veces el ruido se presenta en niveles bajos de tensión, pudiendo producir información errónea. Claro!, no siempre es baja, también puede ser alta, como los famosos picos de tensión. El radio de ruido-a-señal describe cuánto ruido puede tolerar un circuito antes que corrompa la señal y la información válidas. 

El ruido lo podemos definir en función a como se produce y como se acopla al circuito. En general, existen 5 tipos básico de acoplamientos de ruido los cuales son:
  1. Capacitivo.
  2. Inductivo.
  3. Conductivo.
  4. Frecuencia de radio.
  5. Impedancia común.

Acoplamiento Capacitivo.

Nos referimos al ruido electrostático y es un efecto basado en el voltaje. La descarga del rayo es solamente un ejemplo extremo, esta descarga puede provocar daño en los transformadores y demás circuitos eléctricos cercanos. Cualquiera de los conductores separados por un material aislante (incluyendo el aire), constituye un capacitor, en otras palabras, la capacitancia es una parte inseparable de cualquier circuito. El potencial para el acoplamiento capacitivo se incrementa cuando la frecuencia aumenta (reactancia capacitiva, la cual puede ser la resistencia al acoplamiento capacitivo, disminuye con la frecuencia,como puede verse en la fórmula: Xc =1/2πƒC

De lo anterior, vemos que el acoplamiento capacitivo  es representado por la interacción de campos eléctricos entre conductores.  Un conductor pasa cerca a una fuente de ruido (fuente perturbadora), capta el ruido y lo transporta para otra parte del circuito (víctima o fuente perturbada).  Es el efecto de capacitancia entre dos cuerpos con cargas eléctricas, separadas por un dieléctrico, o que llamamos efecto de la capacitancia mutua.

El efecto de campo eléctrico es proporcional a la frecuencia e inversamente proporcional a la distancia.


El nivel de perturbación depende de las variaciones de la tensión (dv/dt) y el valor de capacitancia de acoplamiento entre el “cable perturbador” y el “cable víctima”.

La capacitancia de acoplamiento aumenta con:
  • El inverso de la frecuencia:  La potencia para acoplamiento capacitivo aumenta de acuerdo con el aumento de la frecuencia (la reactancia capacitiva, que puede ser considerada como la resistencia del acoplamiento capacitivo, disminuye de acuerdo con la frecuencia y puede ser vista en la fórmula XC = 1/2pfC)
  • La distancia entre los cables perturbadores y víctima y la longitud de los cables que corren en paralelo.
  • La altura de los cables en relación al plan de referencia (en relación al suelo).
  • La impedancia de entrada del circuito victima (circuito de alta impedancia de entrada son más vulnerables).
  • El aislamiento del cable victima principalmente para paredes de cables fuertemente acoplados.

Técnicas para la reducción del ruido asociado con el acoplamiento capacitivo.

  • Limite de la extensión de cables corriendo en paralelo.
  • Aumente la distancia de los cables corriendo en paralelo.
  • Conecte a tierra una de las extremidades de los shields en los dos cables.
  • Reduzca el dv/dt de la señal perturbadora, aumentando el tiempo de subida de la señal, siempre que sea posible (bajando la frecuencia de la señal).
  • Envuelva siempre que sea posible el conductor o equipo con material metálico (blindaje de Faraday). 
  • Lo ideal es que cubra 100%  la parte a ser protegida y que se conecte a tierra este blindaje para que la capacitancia parásita entre el conductor y el blindaje no actué como elemento de realimentación o de crosstalk. Algunos cables poseen ya un blindaje interno para esto, como el cable UTP con blindaje. Un error habitual es que el cableador corte el blindaje restante de este cable y no lo lleve a tierra, por tal motivo no estaría protegiendo el control del acoplamiento capacitivo.
Espero que les haya gusta el tema del día de hoy. Estén pendientes que dentro de poco estaré publicado la parte #02 de este tema a través de este link donde hablaremos de acoplamiento inductivo

Para saber más acerca de este tema, en los enlaces de fuentes se encuentra toda esta información, ya que en muchos casos literalmente tome la información y la pegue acá sin editar ya que me no me pareció prudente algún cambio -pereza de resumir o reescribir-. Sin embargo respeto los derechos de autor anunciando las fuentes y diciendo que esta entrada así como otras contienen recopilación de diferentes autores sin hacer alusión a ellos solo al momento de incluir los recursos del presente.

Para ver las otras partes de este tema tan interesante ingresa al siguiente link: Fuentes de ruido eléctrico

Escrito por: Breismam Alfonso Rueda Díaz



Fuentes:
  • https://dam-assets.fluke.com/s3fs-public/2815086_6120_ENG_A_W.PDF
  • https://instrumentacionycontrol.net/efecto-de-ruido-en-los-circuitos-de-instrumentacion-criterios-para-minimizar-los-efectos/
  • http://www.trainingconsultinggroup.com/tips/detail/-como-se-acopla-el-ruido-electrico-a-dispositivos-de-medicion-y-control-acoplamiento-galvanico
  • http://www.smar.com/newsletter/marketing/index152.html
  • Articulos técnicos - César Cassiolato
  • Manuales SMAR
  • www.system302.com.br
  • www.smar.com.br
  • http://www.smar.com/brasil2/artigostecnicos/
  • http://www.electrical-installation.org/wiki/Coupling_mechanisms_and_counter-measures
  • EMI - Interferência Eletromagnética, César Cassiolato
  • Aterramento, Blindagem, Ruídos e dicas de instalação, César Cassiolato
  • O uso de Canaletas Metálicas Minimizando as Correntes de Foucault em Instalações PROFIBUS, César Cassiolato
  • Ruídos e Interferências em instalações Profibus, César Cassiolato
  • Pesquisas en internet









Estén pendientes de mi canal, de mi blog y de mi pagina de Facebook para más contenido.